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Abstract  

RADARSAT-1 ScanSAR Narrow B (SCNB) mode imagery at 50 m (nominal) spatial resolution 
of high density shipping regions were acquired along with contemporaneous Automatic 
Identification System (AIS) data via an AISLive snapshot service.  Within the images are 1805 
signatures of isolated ships ranging from 40 m to 350 m in length, for which AIS data, including 
ship identification, size, and velocity, are available. 

The AIS data were verified through an authoritative ship database, which identified errors in the 
static AIS data.  Dynamic errors were also characterized since pairs of location observations were 
available.  The mean error between the AIS-predicted ship position and the ship signature 
position (124 m) is smaller than the average ship length in the overall data set (147 m). 

The data were used to model the radar cross section (RCS) of ships in SCNB data as a simple 
geometric function of the ship length.  The variability about the normalized RCS, a consequence 
of ship type, local incidence angle, ship aspect angle, and sea state, could not be described by a 
single probability density function, but a Log-Normal distribution was appropriate for certain ship 
length ranges.  Ship RCS variability observed in the SCNB data is consistent with that observed 
previously in Fine mode data, but there is an overall scaling differing between the SCNB and Fine 
mode data sets. 

This work demonstrates that the fusion of RADARSAT image signatures of ships with AIS data 
is straightforward and provides unprecedented insight to observed ship signatures.  However, the 
AIS data, at least the static fields, should be routinely verified prior to fusion with other sources 
of ship information. 
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Résumé  

Des images ScanSAR à faisceau étroit B (SCNB) de RADARSAT-1, d’une résolution spatiale au 
sol de 50 m (nominale) des régions maritimes à haute densité de trafic ont été acquises en même 
temps que des données du Système d’identification automatique (SIA) du service d’instantanés 
AISLive. Les images contiennent 1805 signatures de navires isolés, de 40 à 350 mètres de 
longueur, pour lesquelles des données SIA, incluant l’identification, la taille, et la vitesse, sont 
disponibles. 

Les données SIA ont été contrôlées par rapport à une base de données officielle de navires, ce qui 
a permis de détecter des erreurs dans les données statiques SIA. Les erreurs dynamiques ont 
également été caractérisées grâce aux paires d’observations d’emplacement disponibles. L’erreur 
moyenne entre la position d’un navire prédit par le SIA et la position de la signature du navire 
(124 mètres) est plus petite que la longueur moyenne des navires de l’ensemble des données (147 
mètres). 

Les données ont été utilisées pour modéliser la section efficace radar (RCS) des navires dans les 
données SCNB en tant que fonction géométrique simple de la longueur des navires. La variabilité 
des RCS normalisées, une conséquence du type de navire, de l’angle d’incidence local, de l’angle 
de l’aspect du navire et l’état de la mer, ne pouvait pas être décrite par une simple fonction de 
densité de probabilité, toutefois une distribution log normale convenait pour certaines plages de 
longueurs de navire. La variabilité de la section efficace des navires qui a été observée dans les 
données SCNB correspond à avec celle qui a été observée auparavant dans les données en mode 
fin, mais il y a une différence d’échelle entre les données SCNB et les données en mode fin. 

L’étude démontre que la fusion des signatures d’images RADARSAT de navires et des données 
SIA est simple et fournit une possibilité inouïe quant à l’observation des signatures de navires. 
Toutefois, les données SIA, du moins les champs statiques, devraient être automatiquement 
vérifiées avant de fusionner avec d’autres sources de renseignements sur les navires. 
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Executive summary  

Ship Signatures in RADARSAT-1 ScanSAR Narrow B Imagery: 
Analysis with AISLive Data  

Vachon, P.W., English, R.A., Wolfe, J.; DRDC Ottawa TM 2007-052; Defence 
R&D Canada – Ottawa; March 2007.   

Introduction  

This document considers data analysis from the reprise of an experiment that was conducted in 
2005 in which DRDC Ottawa obtained contemporaneous RADARSAT-1 Fine mode data at 8 m 
(nominal) spatial resolution and AISLive snapshot service Automatic Identification System (AIS) 
data for ship validation.  The objective of the 2005 experiment was to develop a database of 
validated ship signatures in RADARSAT-1 imagery for automatic target recognition training.  
The data also proved to be valuable for ship radar cross section (RCS) modelling.  The reprise 
focussed on RADARSAT-1 ScanSAR Narrow B (SCNB) mode data at 50 m (nominal) spatial 
resolution, a mode that is similar to the RADARSAT-2 mode that will be used by the Polar 
Epsilon Project for near-real time surveillance of the ocean approaches to Canada.  The AISLive 
snapshot service was modified to provide snapshot pairs that bracketed the predicted 
RADARSAT-1 acquisition times.  The acquisition times were predicted using the Commercial 
Satellite Imagery Acquisition Planning System (CSIAPS).   

Results  

The experiment resulted in a data set comprised of 23 SCNB images of high density shipping 
regions including Strait of Dover, Strait of Gibraltar, and Busan Strait that were matched to the 
AISLive snapshot data.  Within the images were 1805 signatures of isolated ships ranging from 
40 m to 350 m in length, and for which AIS data, including ship identification, size, and velocity, 
are available. 

It was found that CSIAPS was able to predict the RADARSAT-1 acquisition time to within a few 
seconds, provided CSIAPS was run roughly one week in advance of the pass time.  This pass time 
planning and data acquisition strategy allows more reliable matching of AIS data to observed ship 
signatures in the RADARSAT-1 data, and permits examination of certain error types in dynamic 
AIS data. 

It was found that the AISLive data contains inherent errors relative to an authoritative ship 
database.  These errors might reflect the error rates in AIS data in general.  Ship identification 
errors were relatively rare but do occur.  Ship length was in error for nearly 10% of the ships 
considered.  Errors in dynamic data also occur but are more difficult to quantify.  Use of 
bracketing AISLive snapshot data sets reduced error that could be associated with single AISLive 
snapshot dead reckoning.  The mean error between the AIS-predicted ship position and the ship 
signature position (124 m) is smaller than the average ship length in the overall data set (147 m). 

DRDC Ottawa TM 2007-052 iii 
 
 

 
 



 
 

The total RCS of the SCNB ship data was modelled as a simple geometric function of the ship 
length.  The variability about the normalized RCS, a consequence of ship type, local incidence 
angle, ship aspect angle, and sea state, to name a few, could not be described by a single 
probability density function, but a Log-Normal distribution was appropriate for certain ship 
length ranges. 

The variability of the normalized SCNB ship RCS data is the same as the variability of the 
normalized Fine mode ship RCS data that were acquired in 2005.  However, the two data sets 
differ by the normalization function that was used in each case, which amounts to a few dB over 
the available range of ship lengths.  Presumably this difference can be ascribed to the RCS being 
slightly dependent upon the resolution at which the data were acquired. 

Significance  

This data set and the associated analysis demonstrates that the fusion of RADARSAT image 
signatures of ships with AIS data is straightforward, even in high density shipping regions, 
although interpolation and azimuth shifting operations are essential to obtaining reliable results.  
It is recommended that AIS data, at least the static fields, be routinely verified through an 
authoritative ship database prior to fusion with other sources of ship information.  Analysis of the 
dynamic fields, by comparing track positions with the reported velocity for example, can reveal 
AIS implementation errors that could impact the fusion of AIS data with SAR image signatures. 

Ship RCS variability observed in the SCNB data is consistent with that observed previously in 
Fine mode data, but there is an overall scaling differing between the SCNB and Fine mode data 
sets.  A single probability density function that describes the variability in the data sets could not 
be found.  Nevertheless, it is recommended that the SCNB ship RCS model function and the Log-
Normal distribution be used for RADARSAT-2 SCNB data to reduce false alarms in operational 
software.  Note that image product dynamic range saturation could lead to underestimation of the 
ship RCS. 

Future plans  

RADARSAT data is acquired at a single polarization (i.e., HH).  An Envisat ASAR data set with 
various polarizations has also been acquired and is currently being analyzed.  This data set will be 
valuable in understanding and modelling the polarization dependence of ship RCS and ship target 
contrast.  The ability to model the probability density function of the ship RCS could be improved 
by considering more complex model functions. 
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Sommaire  

Ship Signatures in RADARSAT-1 ScanSAR Narrow B Imagery: 
Analysis with AISLive Data  

Vachon, P.W., English, R.A., Wolfe, J.; DRDC Ottawa TM 2007-052; R & D pour 
la défense Canada – Ottawa; mars 2007.   

Introduction  

Le présent document analyse les données recueillies lors de la reprise d’une expérience déjà 
menée en 2005 par RDDC Ottawa, qui avait acquis des données en mode fin RADARSAT-1 à 
une résolution au sol de 8 m (nominale) et des données contemporaines du Système 
d’identification automatique (SIA) du service d’instantanés AISLive pour la validation des 
navires. L’objectif de l’expérience de 2005 était de mettre sur pied une base de données de 
signatures de navires validées par l’imagerie RADARSAT-1 pour les exercices de reconnaissance 
automatique de cibles. Les données ont aussi prouvées leur valeur quant à la modélisation de la 
section efficace radar (RCS). La reprise de l’expérience était axée sur les données ScanSAR à 
faisceau étroit B (SCNB) de RADARSAT-1. d’une résolution spatiale au sol de 50 m (nominale), 
un mode semblable au mode RADARSAT-2 qui sera utilisé par le projet Polar Epsilon pour la 
surveillance en temps quasi réel des approches océaniques du Canada. Le service d’instantanés 
AISLive a été modifié pour fournir des paires d’instantanés qui couvrent les temps d’acquisition 
prévus de RADARSAT-1. Les heures d’acquisition ont été prédits par le Système de planification 
d'acquisition d'images de satellites commerciaux (CSIAPS). 

Résultats  

L’expérience a fourni un ensemble de données comportant 23 images SCNB des régions 
maritimes à haute densité de trafic, incluant le Pas de Calais, le détroit de Gibraltar et le détroit de 
Corée qui ont été comparées aux données AISLive. Les images contiennent 1805 signatures de 
navires isolés, de 40 à 350 mètres de longueur, pour lesquelles des données SIA, incluant 
l’identification, la taille, et la vitesse, sont disponibles. 

Le programme CSIAPS a été capable de prédire l’heure d’acquisition RADARSAT-1 en quelques 
secondes, sous réserve qu’il ait été exécuté environ une semaine avant le passage du satellite. La 
planification de l’heure de passage et la stratégie d’acquisition de données a permis des jumelages 
plus précis de données SIA avec les signatures de navires observées dans les données 
RADARSAT-1, ainsi que l’examen de certains types d’erreurs dans les données dynamiques SIA. 

On a constaté que les données AISLive contiennent des erreurs inhérentes par rapport à une base 
de données officielle de navires. Ces erreurs peuvent refléter les taux d’erreurs dans les données 
SIA en général. Les erreurs d’identification de navires ont été relativement rares, mais elles se 
sont produites. Il y a une erreur de la longueur de 10 % des navires repérés. Des erreurs dans les 
données dynamiques ont également été révélées, mais il a toutefois été plus difficile de les 
quantifier. L’utilisation d’ensembles de données d’instantanés qui couvrent les temps 
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d’acquisition Radarsat a réduit les erreurs qui auraient pu être associées à des instantanés AISLive 
pris à l’estime. L’erreur moyenne entre la position d’un navire prédite par le SIA et la position de 
la signature du navire (124 mètres) est plus petite que la longueur moyenne des navires de 
l’ensemble des données (147 mètres). 

Les données ont été utilisées pour modéliser la section efficace radar des navires dans les données 
SCNB en tant que fonction géométrique simple de la longueur des navires. La variabilité des RCS 
normalisées, une conséquence du type de navire, de l’angle d’incidence local, de l’angle d’aspect 
du navire et de l’état de la mer, ne pouvait pas être décrite par une simple fonction de densité de 
probabilité, mais une distribution log normale convenait pour certaines plages de longueurs de 
navire. 

La variabilité des données RCS normalisées SCNB est la même que celle des données RCS 
normalisées en mode fin qui ont été acquises en 2005. Cependant, les deux ensembles de données 
diffèrent pour la fonction de normalisation qui a été utilisée dans chaque cas, différence qui 
atteint quelques dB pour la plage disponible de longueurs de navire. Il est probable que cette 
différence soit attribuable au fait que la RCS dépend quelque peu de la résolution d’acquisition 
des données. 

Importance  

Cet ensemble de données et l’analyse qui y est associée démontrent que la fusion de la signature 
de navires d’images RADARSAT avec les données SIA est simple, même dans les régions 
maritimes à haute densité de trafic, mais des opérations d’interpolation et de modification 
d’azimuts sont essentielles pour obtenir des résultats précis. Il est recommandé que les données 
SIA, du moins les champs statiques, soient automatiquement vérifiées avant de fusionner avec 
d’autres sources de renseignements sur les navires. L’analyse des champs dynamiques, par la 
comparaison de positions de trajectoires avec la vitesse rapportée par exemple, peut révéler des 
erreurs SIA qui pourraient avoir un impact sur la fusion des données SIA avec les signatures 
d’images SAR. 

La variabilité de la section efficace radar des navires dans les données SCNB correspond à celle 
qui a été observée auparavant dans les données en mode fin, mais il y a une différence d’échelle 
entre les données SCNB et les données en mode fin. Une simple fonction de densité de 
probabilité, qui décrit la variabilité de l’ensemble de données, n’a pu être trouvée. Il est quand 
même recommandé que la fonction de modèle de la section efficace de navire SCNB et la 
distribution log normale soient utilisées pour les données SCNB de RADARSAT-2 pour réduire 
les fausses alertes dans le logiciel opérationnel. Il faut noter que la saturation de la plage 
dynamique des images pourrait mener à une sous-estimation de la section efficace radar des 
navires. 

Perspectives  

Les données RADARSAT sont recueillies à une seule polarisation. (c.-à-d. HH).  Un ensemble de 
données ASAR ENVISAT avec polarisations multiples a également été recueilli et est en cours 
d’analyse. Cet ensemble de données sera d’une grande valeur dans la compréhension et la 
modélisation de la dépendance à l’égard de la polarisation de la section efficace radar de navire et 
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du contraste navire-cible. Les capacités de modélisation de la fonction de densité de probabilité 
de la section efficace radar de navire pourrait être améliorées par des fonctions de modélisation 
plus complexes. 
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1. Introduction 

In 2005, Defence R&D Canada – Ottawa (DRDC Ottawa) combined Automatic Identification 
System (AIS) data with ship signatures in RADARSAT-1 (R-1) synthetic aperture radar (SAR) 
imagery in order to develop a database for automatic target recognition (ATR) training [8].  The 
initial activity focussed on the highest resolution R-1 data available, i.e., Fine mode at 8 m 
(nominal) resolution, for proof of concept.  As a source of AIS data DRDC Ottawa contacted 
AISLive, a commercial provider, who were able to provide an AIS snapshot service that was 
matched to the nominal satellite pass times.  Three high-density shipping regions were chosen 
that are covered by AISLive: the Straits of Dover, the Straits of Gibraltar, and the Busan Strait.  
This trial eventually yielded 399 Fine mode ship signatures that were used to develop models for 
ship radar cross section (RCS) [8] and its probability density function (PDF) [10]. 

Operational maritime surveillance typically trades-off spatial resolution in order to obtain wider 
area coverage.  Furthermore, the operational near-real time ship detection capability that will be 
implemented by Project Polar Epsilon using RADARSAT-2 imagery will use a mode that is 
similar to the R-1 ScanSAR Narrow B (SCNB) mode at 50 m (nominal) resolution.  Therefore, a 
reprise of the 2005 trial was proposed, but using SCNB (composed of single beams W2, S5, and 
S6).  The objective was to obtain a new data set to evaluate the applicability of the Fine mode 
results to SCNB.  Similarly, new ship RCS models could help to improve performance prediction 
for future C-band SAR missions. 

In addition to position, AIS data provides several identifiers about each ship – its name, its call-
sign, its International Maritime Organization (IMO) registration number, its Maritime Mobile 
Service Identity (MMSI) number – as well as information about its state, such as heading and 
speed.  Access to the unique identifiers for the ships allowed further data-mining by cross-
referencing these IDs with the Internet Ships Register (ISR) Database (http://www.ships-
register.com), maintained by Lloyd's Register – Fairplay, allowing information about vessel 
specification in the AIS reports to be verified in the ISR Database. 

Predicting the AIS-reported ship position at the satellite-pass time is crucial to matching the AIS-
reported information with the correct target signature in the satellite image.  High frequency AIS 
data would be very useful for this exercise; however, it was not a practical solution given the 
limited resources available.  In the 2005 R-1 Fine beam AIS analysis [8], a single AIS-snapshot 
was used to predict the ship positions.  For most cases, the results were very good provided the 
vessel did not turn or accelerate in the time span between the AIS acquisition and the SAR pass. 

To improve the available validation data at the satellite-pass time, two AIS-snapshots were 
collected for the 2006 dataset, one prior to the R-1 start acquisition time and one after the R-1 
stop acquisition time.  Furthermore, the large coverage area provided by SCNB significantly 
increases the number of imaged targets in each scene, as compared to Fine mode coverage, 
requiring a corresponding increase in the AIS collection boundaries. 

This document is arranged as follows:  Section 2 describes the acquired SCNB data set and how 
the R-1 pass times were predicted relative to the AISLive matching service; Section 3 describes 
the processing of the acquired SAR imagery; Section 4 discusses the use of the AISLive data to 
provide an AIS-predicted ship signature position in the SAR imagery; Section 5 summarizes an 
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error analysis of the AISLive data; Section 6 contains examples of ship signatures in SCNB 
imagery that are matched to available AIS data; Section 7 discusses an analysis of the ship RCS 
in terms of an overall model function and a PDF to describe the RCS variability;  and finally, 
Section 8 contains a comparison of the 2005 Fine mode data and the 2006 SCNB data.  The 
conclusions of this work are presented in Section 9. 
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2. Data Acquisition 

The SCNB and AISLive data acquired during this trial are summarized as follows: 

• 36 R-1 SCNB mode acquisitions were ordered; 

• 2 R-1 acquisitions were abandoned (i.e., lost to higher priority acquisitions in a different 
mode); 

• 3 R-1 acquisitions were lost due to payload anomaly; 

• 2 R-1 data sets have Doppler processing problems that we have not so far been able to 
resolve; 

• 1 AISLive acquisition was lost; and 

• 5 AISLive acquisitions have time code errors. 

This activity yielded a set of 23 R-1 SCNB image with contemporaneous AISLive data sets for 
analysis. 

2.1 Acquisition Planning Using SPA and CSIAPS 

The RADARSAT Swath Planner Application (SPA) is a software tool provided by RADARSAT 
International (RSI) and is the de facto standard for R-1 acquisition planning.  SPA uses a nominal 
orbit and conservative swath coverage to provide the acquisition analysis.  A more advanced 
planning application, the Commercial Satellite Imagery Acquisition Planning System (CSIAPS), 
has been developed by DRDC Ottawa with MDA as the development contractor [5].  CSIAPS 
uses actual orbit data and orbit propagation software to provide the acquisition analysis. 

For planning purposes, estimates of image acquisition times were generated using both SPA and 
CSIAPS, with the CSIAPS centre time being used to refine the acquisition time estimate as the 
date of acquisition approached.  The acquisition time estimates for the ordered R-1 imagery was 
used to estimate the desired AISLive acquisition times; AIS snapshots were requested for both 90 
seconds before and 90 seconds after the CSIAPS centre time for each image.  The planned and 
actual acquisition times for the data collected are given in Table 1. 

Comparing the SPA and the CSIAPS centre times with the Raw Data centre times for the 23 cases 
considered, we found that the SPA-predicted pass time was different by 144.3±3.0 seconds, on 
average, while the CSIAPS-predicted pass time was different by -5.8±18.4 seconds, on average.  
However, for the 3 initial cases on June 1, 4, and 6, the R-1 orbit data were not properly updated 
in CSIAPS, so the time differences are larger in those cases.  For the 20 cases in which the orbit 
data were correctly updated, the CSIAPS-predicted centre time was different from the Raw Data 
centre time by 0.8±6.1 seconds, on average.  Given the requirement to provide accurate pass 
times to obtain the contemporaneous AIS data, we recommend use of CSIAPS, in particular to be 
run within a week of the expected pass time, if possible, so that the orbit data are up to date, to 
provide accurate predicted R-1 pass times. 
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Table 1. Planned and actual acquisition times in Univesal Time Coordinated (UTC) for R-1 
SCNB imagery and AIS data.  The first 8 are Busan; the next 9 are Gibraltar; and the 

final 6 are Dover. 
 

Date SPA CSIAPS Actual
Δt SPA     

(s)
Δt CSIAPS 

(s)
AISLive 
Time 1

AISLive 
Time 2

1 1-Jun-06 21:24:47 21:21:48 21:22:27 140.0 -38.9 21:20:19 21:23:19
2 4-Jun-06 09:21:09 09:17:54 09:18:49 139.5 -55.9 9:16:55 9:19:54
3 8-Jun-06 21:20:38 21:18:23 21:18:18 140.0 5.0 21:17:23 21:20:23
4 25-Jun-06 21:24:47 21:22:34 21:22:25 142.0 9.0 21:21:34 21:24:34
5 28-Jun-06 09:21:09 09:18:41 09:18:46 143.0 -5.0 9:17:42 9:20:42
6 15-Jul-06 09:25:16 09:22:48 09:22:50 146.0 -2.5 9:21:49 9:24:49
7 22-Jul-06 09:21:09 09:18:38 09:18:45 144.0 -7.0 9:17:39 9:20:38
8 26-Jul-06 21:20:38 21:18:18 21:18:14 144.0 4.0 21:17:20 21:20:20
1 6-Jun-06 18:27:08 18:23:53 18:24:47 141.0 -53.8 18:22:53 18:25:53
2 30-Jun-06 18:27:08 18:24:41 18:24:44 144.0 -3.0 18:23:41 18:26:41
3 5-Jul-06 06:26:09 06:23:47 06:23:43 146.0 4.5 6:22:48 6:25:47
4 7-Jul-06 18:22:59 18:20:29 18:20:32 147.0 -3.5 18:19:30 18:22:29
5 12-Jul-06 06:21:59 06:19:33 06:19:33 146.0 -0.5 6:18:32 6:21:32
6 24-Jul-06 18:27:08 18:24:40 18:24:34 154.0 6.0 18:23:41 18:26:40
7 29-Jul-06 06:26:09 06:23:46 06:23:45 144.0 1.0 6:22:46 6:25:46
8 31-Jul-06 18:22:59 18:20:28 18:20:35 144.0 -6.5 18:19:00 18:21:59
9 5-Aug-06 06:21:59 06:19:34 06:19:35 144.0 -1.0 6:18:34 6:21:34
1 5-Jul-06 17:45:18 17:42:47 17:42:52 146.0 -5.0 17:41:48 17:44:47
2 9-Jul-06 06:05:01 06:02:44 06:02:34 147.0 10.5 6:01:44 6:04:44
3 16-Jul-06 06:00:49 05:58:32 05:58:24 145.0 7.5 5:57:33 6:00:32
4 2-Aug-06 06:05:01 06:02:44 06:02:37 144.0 6.5 6:01:44 6:04:45
5 5-Aug-06 17:41:08 17:38:33 17:38:44 144.0 -11.0 17:37:37 17:40:33
6 9-Aug-06 06:00:49 05:58:30 05:58:24 145.0 6.5 5:57:31 6:00:32

Each data set consists of one image and two AIS snapshots, one acquired prior to the pass time 
and one acquired after the pass time, collected nominally 3 minutes apart.  The vessel data 
recorded in each snapshot, however, have a time latency of between 0 and 180 seconds.  This 
means that despite the image being nominally bracketed by the two snapshots, there will be 
vessels with both AIS broadcasts preceding the image acquisition. 

Figure 1 shows the data latencies for a representative case from Dover on 9-Aug-2006.  The 
image centre time is at 05:58:24, 6 seconds earlier than predicted with CSIAPS, and 2 minutes 5 
seconds earlier than predicted by SPA.  From the post-image snapshot, 721 AIS reports are time-
stamped after the image centre time and 70 (8.8%) are listed as reporting before.  Only 7 of these 
are underway with a speed greater than 0.5 knots, two others are underway with a speed less than 
0.5 knots, with the remainder moored, anchored or reporting zero speed.  AIS specifications only 
require stationary vessels to report their position every 6 minutes, with the frequency of reports 
increasing as the speed of the vessel increases, which should account for the bulk of the latencies.  
Since the AIS broadcasts are line-of-sight over Very High Frequency (VHF) radio frequencies, 
communication errors may account for the high latency in the 7 vessels at speed.  
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AIS 
reports 

Time (minutes) 

Figure 1. Histogram of latencies from AIS broadcast times by the originating vessels to the 
AISLive snapshot acquistion time for the Dover, 9-Aug-2006 collection.  The pre-image 
snapshot (red) and post-image snapshot (blue) are shown relative to the image centre 

time (green line), which occurred 6 seconds earlier than predicted by CSIAPS. 
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3. SAR Data Processing 

The initial plan was to obtain 8-bit, radiometrically-calibrated image products from the Canadian 
Data Processing Facility (CDPF) based upon a “mixed” output look-up table (LUT).  However, 
we immediately realized that, for these products, the ship signatures of interest would be saturated 
within the available 8-bit dynamic range.  We tried to compensate for this by having the data re-
processed using a point target output LUT.  These new products, though more successful, still had 
significant target saturation problems. 

Unfortunately, DRDC Ottawa did not have a supported R-1 ScanSAR processor available in 
house.  As such, the burst mode module was procured for the available Advanced Precision 
Processor (APP) [11] that is in routine use.  This processor optionally provides floating point 
output products, which are not radiometrically saturated and do not require use of an output LUT.  
The calibration of the APP floating point product was verified against that of the CDPF products 
and was found to be very close. 

The overall processing strategy for this project was to obtain raw data product from the CDPF, 
and to base our analysis on floating point image products produced using APP.  It should be noted 
that RCS measurements based upon saturated 8-bit image products would, in general, be 
underestimated relative to the floating point products that we used in this work. 

Aside from the ship signature position, the main analysis step was estimating of the ship signature 
total RCS.  A VUSAR-like algorithm [13], in which an image chip is analyzed, and a clutter 
estimate based upon the four corners of the image chip, was used.  Ship RCS estimates from the 
VUSAR algorithm have previously been compared with results from other exploitation tools [7]. 
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4. AIS Data Processing 

The goal of using AIS data is to establish a correspondence between information about a ship in 
the database and its SAR signature in the R-1 imagery.  Vessel motion will cause a separation 
between the signature and the AIS-reported positions, both along the track of a ship due to time 
differences between the AIS-report and the image acquisition, and in the azimuthal direction of 
the image due to a Doppler shift of the ship signature.  Further differences may arise due to issues 
with image registration, Global Position System (GPS) time stamps, AISLive snapshot database 
time stamps, non-linear ship motion, ship accelerations, on-board GPS antenna location, and 
other sources of errors. 

By processing the data to correct for the largest position shifts, most AIS-reported positions for 
vessels within the confines of the image can be uniquely matched to a signature in the imagery, 
even using a single AIS report [8].  The introduction of the second AIS report allows us to avoid 
further sources of error by interpolating the position of the ship between the snapshots, where 
possible, rather than relying upon vessel-provided heading and speed.  The data processing 
methodology consists of the following: 

• Project the vessel position from the bracketing AIS-reported ship positions to correspond to 
the satellite pass times to produce the set of AIS-projected positions; 

• Azimuth-shift the AIS-projected positions to the set of AIS-predicted positions to account 
for the Doppler frequency shift of moving targets; 

• Locate the ship signature given the AIS-predicted position and perform target analysis if a 
valid signature is found; 

• Perform filtering operations such as land masking; and 

• Gather statistics and carry out data analysis, as warranted. 

4.1 AIS-Projected Position 

Each AISLive snapshot provides four characteristic parameters that serve to constrain the 
geometry of the vessel’s track over time, namely: time t , position X , Heading H , and Speed 
over Ground (SoG) .  Ideally, one would use Course over Ground (CoG) rather than Heading, 
but AISLive only provides AIS CoG in the Heading field when AIS Heading is not available; the 
two can be distinguished by noting that AIS CoG is formatted to one decimal place, while AIS 
Heading is integer.  The presence of AIS CoG is found in 1741 cases out of the 18,857 AIS 
entries (9.2%), 587 of them with AIS SoG above 0.5 knots. 

S

The simplest approach to projecting the vessel position from an AISLive snapshot is to use dead-
reckoning (DR), whereby the new position is shifted in the direction H  by a distance of 

, where )( TtS − T is the image acquisition time.  So long as the AIS-reported Heading and 
Speed are consistent with the actual position changes of the vessel, DR provides a reasonably 
good estimate for allowing the pairing of AIS and signature positions [8].  For a small, but 
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significant, number of vessels, inconsistencies have been observed to the extent that a more 
refined method is required to resolve the uncertainties about these targets. 

Data from the two AISLive snapshots, which we index by },{ fij ∈  to indicate the source being 
either the initial (ideally pre-image) or final (ideally post-image) snapshot, is used to develop an 
interpolation method for projecting the vessel position.  The majority of entries in each snapshot 
can be matched to an entry in the other for that vessel.  When such vessels are underway and 
manoeuvring, we can use the combined data to improve the approximation of the vessel position 
at the image acquisition time.  Primarily, we consider the circumstances when the image 
acquisition occurs between the AIS broadcasts captured by each AIS snapshot, but the approach 
does provide useful information to improve results when both AIS broadcasts occur before the 
image acquisition or both occur after.  

Using the two snapshot datasets independently, DR will give approximate positions to serve as 
initial conditions for an azimuthal shift correction, but unless the vessel’s actual CoG and SoG 
remain constant and the AIS fields are error free, these estimations may differ considerably.  In 
particular, if the vessel has effected a manoeuvre, neither set of conditions may be close to the 
conditions required to implement a correct azimuthal shift.  Instead, we propose the following 
methodology. 

Initially, our assumption was that vessels only engage in a single manoeuvre between the AIS 
snapshots.  This assumption was quickly abandoned as it was unable to adapt to cases where the 
Heading remained constant, , but differed from CoG calculated as the bearing of the 

vector between the two points, 
if ` HH =

)arg(0 if XXC −= , relative to true north.  We note that, in 
general, the Great Circle path between points is not of constant course, yet constant course is the 
natural method of travel for maritime vessels.  This issue has been resolved through the use of the 
Mercator Projection [1], in which straight lines are indeed paths of constant course, called 
loxodromes or rhumb lines, over the Earth’s surface. 

To convert geodetic coordinates ( , )j jX jλ ψ= , where λ  is the longitude and ψ  the latitude, 
into Mercator coordinates, we use [12]: 

( )
( )
( )

0 rad ,

1 sin1 ln ,
2 1 sin

j E j

j
j E

j

x R

y R

λ λ

ψ

ψ

= −

⎛ ⎞+
⎜ ⎟=
⎜ ⎟−⎝ ⎠

 (1)

where 0λ  is any reference meridian, so we choose iλλ =0  whereby 0=ix . 

Normalizing the distance scale to the x -direction, the  scaling becomes: y
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( )
cos( )

E f iR
C

ψ ψ
ρ

−
Σ =  (2)

where 22 )()( ifif yyxx −+−=ρ  is the rhumb line distance between the two points. 

In an ideal, error-free situation, the vessel will travel a distance of ( )if
if tt

SS
D −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
Σ

=
2

1
.  

For a non-manoeuvring vessel, we expect = ρD .  However, rarely do the AIS SoG and Heading 
exactly produce this result.  We therefore independently calculate estimates for CoG and SoG. 

We assume that the positions and times are precise, whereby the vector, 0D , connecting the two 

points is characterized by angle  and length 0C tS Δ= 0ρ ,  and  being the zeroth order 
approximations to course and speed, respectively. 

0C S0

The estimated path of the vessel is then approximated by three segments.  There are two cases to 
be considered, depending on whether the path must cross 0D  or not in order to satisfy the initial 

AIS CoG conditions, as shown in Figure 2.  In the case where the path need not cross, lies 

between C  and .  The path is therefore constructed of a circular arc whose endpoint tangents 

have angles  at  and  at the other, a straight line with bearing , and a final circular 

arc subtending from C  to .  A single degree of freedom remains that determines the radii of 

the arcs, the offset, 

0C

i fC

iC iX 0C 0C

0 fC
δ  of the path from the vector, and subsequently the total path length.  In the 

case where the path crosses the vector, the straight line component has a calculated bearing of 
ω+= 01 CC , where ω  is the angular offset that parameterizes the remaining degree of freedom, 

the arc radii, and the total path length.  

The path length, ),( ωδtotalD , is calculated by summing the three components, scaled to correct 
for the Mercator Projection, and compared to the maximum distance the vessel might have 
traveled by using ))(( ttSD max ifj

j
max −= DD >)0,0(

)/()0,0( ttDS −= DD =)0,(

.  If , then the reported speeds 

cannot produce the required track between GPS positions.  This is resolved by assuming an actual 
speed of .  Otherwise, we can solve 

maxtotal

iftotalt maxtotal δ  or 

maxtotal DD ),0( =ω , depending on which case we have.  Another alternative is to equate  to 
.  Since there are a wide range of possible SoG variations for 

manoeuvring vessels to exhibit, and there is currently insufficient rationale to prefer one 
constraint over the other, we have chosen to implement the constraint , where 

. 

totalD
2/))(( iffiavg ttSSD −+=

DD =
2/)( DDD +=

testtotal

avgmaxtest
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A choice of constraint other than  will require that  vary quadratically with time, but 
with three constraints – two points and one distance – the quadratic parameters can be solved for.  
With these calculations in hand, the path can then be parameterized according to time, t , 

along with corresponding CoG and SoG values, C and , respectively.  Should the image 
acquisition time, , be outside this interval, DR is implemented using the calculated endpoint 

values, 

avgD )(tS

],[ tt∈
)(t )(tS

t

fi

acq

( ))(),( jj tStC  with  
⎩
⎨
⎧

>
=

.,
,,

facq

iacq

ttf
tti

j
<

 

     
(a)  

C0 Ci Cf 

Ci C0 
δ 

Cf ω 
C1 

(b) 

Figure 2. The two cases for interpolation.  The 0D  vector is in red, the estimated path  
is in blue.  Initial, final, zero-th approximation, and first approximation courses 
are , C , C , and , respectively.  The path length is a function of: a) the 

offset 

totalD

iC f 0 1C
δ  for the non-crossing case; and b) the angular offset ω  for the crossing 

case.  

4.2 AIS-Predicted Position 

The AIS-projected positions are azimuth shifted to AIS-predicted positions to account for the 
Doppler frequency shift of moving targets based upon the AIS-reported velocity and the satellite 
geometry.  The effective shift in azimuth ( azΔ  in meters) is: 

s r
az

sc

R V
V

Δ =  (3)

where sR  is the spacecraft to target slant range in meters, V  is the radial velocity of the ship in 

m/s, and 
r

scV  is the spacecraft velocity in m/s.  V  is defined as: r
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( ) ( )S cos cosr projV incχ φ θ= × ×  (4)

where  is the projected ship speed over ground in m/s, Sproj φ  is the difference between the 

platform look direction and the projected course over ground ( C ) expressed in radians, and proj

incθ  is the target incidence angle expressed in radians.  For APP-generated descending mode 
products 1.0χ = − 1.0; APP-generated ascending mode products χ = +

)LHj
⎤− ⎦

                                                     

. Then 

, where LH is the azimuth line heading expressed in degrees(rad 90 proCφ χ⎡= ° −⎣
1. 

An example of the interpolation and azimuth shift of AIS-reported positions is provided in Figure 
3.  This R-1 SCNB image chip acquired over Gibraltar on 5 July 2006 illustrates the DR of the 
bracketing AIS-snapshots (blue and red lines), the interpolation to AIS-projected position 
(intersection of green and yellow lines), and the azimuth-shift operation (green line) to the AIS-
predicted position (the + sign).  The position information indicates the ship was turning during 
acquisition and illustrates the capability of the interpolation step.  Figure 4 is a R-1 SCNB image 
chip acquired over Dover on 16 July 2006 and illustrates accurate position predictions for 
numerous AIS-reported positions.  Figure 5 presents a more challenging case. 

 
1 These azimuth shift equations apply to APP-generated image products which are oriented north-up, west-
left.  Special attention (i.e., modifications) would be required to properly interpret CDPF products, 
particularly ScanSAR image products, since they are oriented in acquisition coordinates and use a different 
definition for LH. 
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Figure 3. This R-1 SCNB image chip acquired over Gibraltar on 5 July 2006 illustrates the dead-
reckoning of the bracketing AIS-snapshots (blue and red lines), the interpolation to 

AIS-projected position (intersection of green and yellow lines), and the azimuth-shift 
operation (green line) to the AIS-predicted position (+ sign). 

 

12 DRDC Ottawa TM 2007-052 
 
 
 
 



 
 

 

Figure 4. This R-1 SCNB image chip acquired over Dover on 16 July 2006 illustrates the dead-
reckoning of the bracketing AIS-snapshots (blue and red lines), the interpolation to 

AIS-projected positions (yellow lines), and the azimuth-shift operation (green lines) to 
the AIS-predicted positions (+ signs). 
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(a) 

(b) 

Figure 5. This R-1 SCNB image chip acquired over Gibraltar on 24 July 2006 illustrates the 
dead-reckoning of the bracketing AIS-snapshots (blue and red lines), the interpolation 
to AIS-projected position (intersection of green and yellow lines), and the azimuth-shift 

operation (green line) to the AIS-predicted position (+ sign).  Note that the middle 
vessel is reporting a heading nearly 180° from its actual course, while the rightmost 
vessel is reporting a speed of zero.  The dead-reckoning using a single AIS-snapshot 
(a) leaves ambiguity in all but the lower left vessel, while the interpolation (b) allows 

us to calculate reasonable predicted positions, allowing all four vessels to be 
distinguished with a high degree of confidence. 
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4.3 Ship Signature Position 

To locate the target signature position, a local subscene (equivalent to 800 m by 800 m) centered 
on the AIS-predicted position is ingested.  The position of the maximum σ °  value in the 
subscene is defined as the target signature position; the local subscene is then re-centered on the 
target signature position for subsequent calculations, including estimation of the total RCS. 

4.4 Data Filtering 

To ensure that the local subscene containing the matched AIS target signature does not contain 
land cells, multiple target signatures, and/or other undesirable effects, various filtering techniques 
were developed to maximize the desired scenario of a single target signature surrounded by 
representative local ocean clutter.  The following provides a synopsis of the target filtering 
techniques: 

• Valid IMO – A target is excluded if the IMO is invalid; 

• Land Masking – A target is excluded if there is any land within a 1.6 km radius of the target 
position; 

• Port Masking – A target is excluded if the target position is within a known defined port 
region where the potential for multiple targets within the local subscene is very high; 

• Image Edge Masking – A target is excluded if any part of the desired target subscene is 
beyond the dimensional constraints of the image product; 

• Airball Masking – A target is excluded if any part of the desired target subscene contains 
image border “airballs” (i.e., the zero padded region around the image); 

• Multi-Signature Target Masking – A target is excluded if the target subscene contains 
multiple signature targets2 ; 

• Multi-AIS Target Masking – A target is excluded if more than one AIS record has been 
associated with the same signature target; 

• Insignificant Target Signature Masking – A target is excluded if  

( )max clut clutSTD5σ σ σ° ≤ ° + °  

where maxσ °  is the maximum °σ  value in the target subscene, clutσ °  is the mean of the 

local ocean clutter, and clutSTDσ °  is the standard deviation of the local ocean clutter; 

• AIS-ISR Match – A target is excluded if given the target AIS IMO there is no matching 
IMO in the ISR database; 

• Total RCS ≤ 0 Mask – A target is excluded if the total RCS calculation is ≤ 0; 

                                                      
2 Detecting multiple targets consists of calculating four mean clutter values from each of the four corners in 
the target sub-scene.  A multiple target is sensed if the difference between the maximum mean clutter value 
and the minimum mean clutter value among the four corners is greater than 5 dB.  
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• ISR shiplength ≤ 0 Mask – A target is excluded if the ISR shiplength ≤ 0 (i.e., an erroneous 
ISR entry); 

• Search Radius > 400 m Mask – A target is excluded if the spherical distance between the 
predicted position and the target signature position is greater than 400 m. 

In the 23 R-1 SCNB/AISLive data sets, a total of 4965 within-image AIS targets were obtained 
from the AISLive data.  After data filtering operations such as land masking, a total of 1805 high 
confidence matches between AIS-predicted positions and the associated target signatures are 
available for further analysis.  The target filtering specifics are as follows: 

• Total #AIS records within RADARSAT coverage   4965 

• # AIS records with IMO < 0                                                         0 

• # AIS records with IMO = 0                                                     360 

• # AIS records with IMO = 1                                                         0 

• # AIS ships landmasked                                                           2436 

• # AIS ships portmasked                                                           142 

• # AIS ships at image edge                                                        15 

• # AIS ships with airballs                                                          53 

• # AIS ships with multitargs detected in target subscene          74 

• # AIS ships with multiple AIS hits at same target position     13 

• # AIS ships with no significant target signature                      3 

• # counts where no AIS to ISR match occurred                    37 

• # aistargtotalrcs ≤ 0                                                               6 

• # ISR lengths found ≤ 0 meters                                           7 

• # AIS ships with signiftargsig > search radius of 400m        14 

• # AIS ships with signiftargsig ≤ search radius of 400m      1805 

To illustrate the effects of the filtering operations, Figure 6 shows the AIS-predicted positions for 
an image acquired over Dover on 2 August 2006 prior to any filtering, while Figure 7 shows the 
target signature positions after filtering. 
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Figure 6. AIS-predicted positions prior to land masking and other filtering operations for the R-1 
SCNB image acquired over Dover on 2 August 2006. 
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Figure 7. Target signature positions after land masking and other filtering operations for the R-1 

SCNB image acquired over Dover on 2 August 2006. 
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5. Error Analysis of AISLive Data 

5.1 Ground Truth 

The ground truth for our ATR analysis was actually derived from the Lloyd’s Registry Fairplay 
ISR database, as determined by the vessel identifiers extracted from the AISLive database 
snapshot service that corresponded with the R-1 image acquisitions.  That is, the raw AIS 
broadcast data were not collected and are not available to us.  The results of this error study 
depend as much on the validity of the two filtering databases as on the original AIS data itself. 

AISLive collects AIS broadcast data and updates its database accordingly, including the collation 
of static, voyage, and dynamic data into a single time-stamped entry.  Lloyd’s Registry also 
modifies its ISR database entries over time, as commercial events occur, and is impacted by 
changes in ownership, flag, and name, to name a few.  Having noted this, the ISR and AISLive 
databases are two independent sources of data and, where agreement occurs, the chance of 
simultaneous, identical errors is thought to be remote. 

5.2 Ship Identification 

In the 23 R-1 SCNB/AISLive data sets, 3686 within-image AIS targets with unique identifier sets 
(IMO, MMSI, Call Sign, and Vessel Name) have been obtained from the AISLive data.  Forty-
seven of these targets do not appear in the ISR database under any of the noted identifiers.  Most 
of these have been identified as a vessel type not regulated by the IMO, and therefore not part of 
the ISR collection, e.g., law-enforcement, military, harbour tug, pilot boat, inland-waterway 
vessel, or domestic ferry.  This reduces the number of comparable targets to 3639 vessels. 

Comparing the alphanumeric contents of the IMO, MMSI, and Call Sign fields, 3445 of the 
vessels (94.7% of the 3639 vessels) have completely identical entries (alphanumerically) for the 3 
fields in both databases.  Of the 196 remaining vessels, 44 have either the MMSI or Call Sign (or 
both) missing from the ISR database.  At most, 152 of the vessels (4.18% of the 3639 vessels) 
might have errors in their AIS identifier information.  It is expected that non-error differences, 
such as the sale, renaming, and issue of new identifiers, will reduce this estimate.  It should be 
noted that there is only one vessel for which both the IMO and the Call Sign have ISR entries but 
cannot be matched alphanumerically to the AISLive fields.  In this case, the IMO number in the 
AISLive data has a 1-digit error, while the Call Sign is completely different. 

Since the MMSI, Call Sign, and Vessel Name can legitimately change over time, it is difficult to 
distinguish differences in these fields due to AIS errors from database latency or other non-error 
effects.  The IMO, on the other hand, remains the unique identifier for a hull throughout its 
lifetime.  Thus, differences between the AISLive and ISR databases should be indicators of error.  
To this end, 34 cases (0.934% of the 3639 vessels) for which the AISLive IMO data is in error 
(taking the ISR database as the truth) have been observed, see Table 2. 
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Table 2. Enumeration of observed IMO Errors. 

Error Class Error Type Number of Errors 
Transcription 1-digit dropped 5 
 1-digit miskeyed 11* 
 2-digits miskeyed 1* 
 2-digits transposed 1 
Invalid Number Entered as 0 1 
 Entered first 3 digits only 2 
Incorrect Number Official Number used 6 
 Transposed with MMSI 2 
 Entered as 8888888 1 
 Unknown error 4 
Total  34 

*In two cases, the error points to an incorrect ISR database entry; the resulting IMO belongs to 
another vessel. 

5.3 Ship Length 

The vessel length according to the ISR Database was compared to that reported via AIS, as shown 
in Figure 8.  Most of the AIS errors correspond to reports of zero ship length, and there are 
several cases of incorrectly populated fields (e.g., it appears that the ship width was reported 
rather than the length).  Overall, an error rate is evident in the AIS-reported length of about 
9.92%, where an error is generously defined as a discrepancy between the two length measures of 
30% or more.  For subsequent analysis, the actual vessel length was taken as the verified length 
according to the ISR Database. 

Figure 9 shows a histogram of the ISR ship length with mean and standard deviation equal to 147 
m and 66 m, respectively.  The minimum and maximum ship lengths for the data set are 40 m and 
350 m, respectively. 
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Figure 8. Scatter plot of the ship length according to the ISR database and as reported via 
AISLive. 
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Figure 9. Histogram of the ISR database ship length for the R-1 SCNB dataset. 

5.4 Dynamic Data 

By using bracketing AISLive snapshots, the only AIS dynamic data used in the subsequent 
analysis is the GPS position information.  The two positions and their acquisition times allow 
CoG and SoG to be estimated independently, as per Section 4.1, from the AIS-supplied fields for 
heading, CoG, and SoG.   

It would be preferable to be supplied with both AIS Heading and AIS CoG for all cases; AISLive 
has been informed of this, but has not altered their snapshot format, which provides AIS CoG 
only when AIS Heading is unavailable.  As for the preference for AIS CoG over AIS Heading, for 
ships traveling at significant speeds, say > 5 knots, the AIS CoG becomes important for single 
AISLive observations since the CoG is the basis for calculating the DR and the velocity 
component for the azimuth shift of the SAR-imaged ship signature.  For stationary targets, that is 
moored, anchored, or station-keeping, where speeds are low, say < 0.5 knots, the AIS CoG 
becomes a random-walk dominated by noise and is of little value. 
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Since we do estimate an independent CoG when pairs of snapshots are available, we can compare 
the estimated CoG against the provided AIS Heading to estimate the magnitude of errors arising 
from using the AIS Heading instead of an actual CoG (see Figure 10).  Following data filtering 
operations such as land masking, 1452 cases with pairs of AISLive snapshots remained for this 
analysis, amounting to 2904 separate comparisons of estimated CoG and provided AIS Heading. 

The mean error of this comparison is 48 m with a standard deviation of 143 m, which is less than 
the length of many of the vessels under consideration.  Only 39 of these comparisons (1.34% of 
the 2904), representing 28 different vessels, exhibit a position error that is greater than the SAR 
signature proximity distance that was used, i.e., 500 m (recall that we are working with pairs of 
snapshots; in some cases only one of the possible two comparisons exceeded the SAR signature 
proximity distance).  Three of the vessels are involved in manoeuvring (as judged by comparing 
the change in AIS Heading with the estimated CoG), which likely generates the discrepancy.  
Three additional vessels exhibit an AIS SoG that cannot be reconciled with the AIS positions (in 
two comparisons there was zero speed reported, but the vessel position changed significantly; in 
one comparison the speed was reported as 11.2 knots, but the vessel position did not change).  
The difference between AIS Heading and interpolated CoG is given for the remaining 22 pairs 
(see Figure 11), showing an unbiased distribution.  Statistically, it appears that the use of AIS 
Heading and AIS SoG to dead-reckon positions where only one AISLive snapshot is available, is 
appropriate, and will have little impact on the ability to match AIS validation data with SAR 
image signatures. 
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Figure 10. Histogram of the spherical distance between AIS-projected positions derived from AIS 

Heading/SoG and interpolated CoG/SoG. 
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Figure 11. Difference between AIS Heading and interpolated CoG for outlier ships. 
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6. Examples of Matched AIS and Ship Target 
Signatures 

This section shows some illustrative examples that are intended to provide a visual and statistical 
link between the target signature in the SAR image and the matched ship in the AIS data.  They 
also illustrate some of the dynamics of the dataset.  Each figure consists of the SAR sub-scene 
underlay with the target signature identified, a photograph of the vessel in question, the associated 
AISLive snapshot parameters, and the ship signature point-target analysis results from the 
VUSAR tool.  Figure 12 and Figure 13 show the vessels with the minimum and maximum ship 
lengths found in the entire dataset.  Figure 14 and Figure 15 show the vessels with the minimum 
and maximum total RCS found in the entire dataset.  Meanwhile, Figure 16 shows a vessel that 
had essential the mean length and the mean total RCS found in the entire data set. 

 
Figure 12. The ship with the minimum ship length in the entire dataset.  The Cable One is a 

dredging vessel with an overall length of 40 meters and had a measured total RCS of 
32.97 dB-m2.  Ship photo courtesy of www.fotoflite.com. 
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Figure 13. The ship with the maximum ship length in the entire dataset.  The Cosco Hellas is a 

container ship with an overall length of 351 meters and had a measured total RCS of 
59.96 dB-m2.  Ship photo courtesy of www.fotoflite.com. 
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Figure 14. The ship with the minimum measured total RCS in the entire dataset.  The Stavros 
Niarchos is a sailing vessel with an overall length of 59 meters and had a measured 

total RCS of 9.76 dB-m2.  Ship photo courtesy of www.fotoflite.com. 
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Figure 15. The ship with the maximum measured total RCS in the entire dataset.  The London 
Express is a container ship with an overall length of 283 meters and had a measured 

total RCS of 66.63 dB-m2.  Ship photo courtesy of www.fotoflite.com. 
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Figure 16. A representative ship that measures very close to the overall mean ship length and 
overall mean total RCS  for the entire dataset.  The Saramati is a cargo ship with an 

overall length of 146 meters and had a measured total RCS of 46.83 dB-m2.  Ship photo 
courtesy of www.fotoflite.com. 
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7. Ship Signature Analysis 

7.1 Position 

The improvement in the position accuracy provided by the dead-reckoning/interpolation and the 
azimuth-shift operations is illustrated by Figure 17 through Figure 19.  Figure 17 shows a 
histogram of the absolute difference between the AIS-reported positions and the target signature 
positions.  Figure 18 shows a histogram of the absolute difference between the AIS-projected 
positions and the target signature positions.  Figure 19 shows a histogram of the absolute 
difference between the AIS-predicted positions and the target signature positions.  Table 3 
summarizes the results by providing the mean and standard deviation of the separation distances3 
between the AIS reported, projected, and predicted positions and the target signature positions.  
The mean separation distance is reduced from 638.5 m for the AIS-reported position to 124.2 m 
for AIS-predicted position, which is smaller than the average ship length in the data set.  The 
standard deviation of the separation distance is reduced from 460.8 m for the AIS-reported 
position to 66.5 m for the AIS-predicted position.  

 
Figure 17. Histogram of the separation distance between the AIS-reported ship position and the 

target signature position. 

 

                                                      
3 The separation distance is the spherical distance between the AIS-position (where position is one of 
reported, projected or predicted) and the maximum σ° location in the target signature.  
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Figure 18. Histogram of the separation distance between the AIS-projected ship position and the 

target signature position. 

 

 
Figure 19. Histogram of the separation distance between the AIS-predicted ship position and the 

target signature position. 

 

DRDC Ottawa TM 2007-052 31 
 
 

 
 



 
 

Table 3. Comparison of AIS Position and Target Signature Position. 

AIS Position Mean [m] STD [m] 

Reported 638.5 460.8 

Projected 385.8 254.2 

Predicted 124.2 66.5 

7.2 Radar Cross Section 

We now have available a data set that is amenable to assessment of automatic analysis tools, 
providing a good set of well-separated target vessel signature for which there is a high confidence 
in the accuracy of vessel ground-truth data.  For purposes of this document, the primary measures 
considered are the ISR ship length and the estimated total radar cross section (RCS) of the 
matched ship target signature using the VUSAR tool.  Figure 20 provides a histogram of the total 
RCS, indicating an overall mean of 44 dB-m2. 

Figure 21 shows a log-log plot of the VUSAR-measured total RCS versus the validated ISR 
Database ship length.  A simple fit to the observed data is given by: 

2.30.324S Lσ =  (5)

where sσ  is the total RCS in m2 with the sub-script “S” referencing the ScanSAR mode source of 
the SAR data, and  is the ship length in meters.  There is considerable dispersion about this 
model fit since target geometry (i.e., the incidence and aspect angles), the target type, and the 
vessel configuration have not been accounted for.  

L

Figure 22 shows a histogram of the total RCS 
following normalization by sσ .  The fit of equation (5) is also referred to as the “AISLive2006” 
fit. 

As a check for incidence angle dependence, the total RCS normalized by sσ  was plotted as a 
function of incidence angle.  The data span incidence angles from 31° to 48° (recall that the R-1 
data were all SCNB mode in this case).  No dependence on incidence angle was found. 
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Figure 20. Histogram of the Total RCS for the R-1 SCNB dataset. 

 

 

Figure 21. Log-log plot of the VUSAR-measured Total RCS versus the validated ISR Database 
ship length along with several model fits. 
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Figure 22. Histogram of the normalized Total RCS for the R-1 SCNB dataset. 

Figure 21 compares our observed RCS values with two other models for ship RCS that are 
available.  First, Vachon et al. [9] suggested the following formula for ship RCS: 

)11.078.0(08.0 3/7 θσ += LV  (6)

where Vσ  is the total RCS in m2 and θ  is the incidence angle expressed in degrees.  This 
empirical model is based upon comments by Skolnik [6] concerning ship RCS and used a very 
limited number of known ships in R-1 single beam mode data.  Second, Vachon et al. [8] used R-
1 Fine mode data and AISLive data acquired in 2005 for validation to arrive at the following 
formula for ship RCS: 

1.981.25F Lσ =  (7)

with the sub-script “F” referencing the Fine mode source of the SAR data.  The fit of equation (7) 
is also referred to as the “AISLive2005” fit.  Each of the models appears to be similar to the total 
RCS values derived from the SCNB data. 
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7.3 Probability Density Function 

In order to model the dispersion of the observed total RCS data derived from SCNB, as was done 
in [10] for Fine mode data validated with AISLive data, the well-known Kolmogorov-Smirnov 
Hypothetis (KSH) [3][4] was used to judge the quality of fits of the normalized RCS to standard 
probability density function (PDF) models including Gamma, Rayleigh, Rician, Weibull, Chi-
squared, and Log-Normal distributions.  Much more effort could be put into this type of analysis, 
based upon more complex, multi-parameter PDFs (e.g., [2]).  However, only the Log-Normal 
distribution showed promise (i.e., was accepted by the KSH test), thus becoming the focus of this 
analysis. 

Figure 23 and Figure 24 show PDF and CDF plots of the normalized RCS for all 1805 ships in 
the SCNB dataset, along with the associated Log-Normal fits.  For each such plot, the actual data 
are represented by the bar graph and the solid black line; the fitted PDF is represented by the solid 
red line; the parameter fits are shown in the legend; and the KSH test result is shown on the plot.  
In this case, it is noted that the Log-Normal PDF fit to this data set is rejected by the KSH test. 

Figure 25 through Figure 31 provide the PDF plots of the normalized RCS stratified across 
various ship length populations.  Table 4 provides a summary of the results showing the ship 
lengths, the KSH test result, the number of samples per population considered, and the shape (A) 
and scale (B) parameters for the Log-Normal distribution fit.  We see that a suitable fit is not 
found across the entire data set, but when stratified by ship length, the Log-Normal distribution 
can be used in some cases to model the observed total RCS variability. 

 

Figure 23. PDF of the normalized RCS for the entire dataset with a Log-Normal PDF fit. 
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Figure 24. CDF of the normalized RCS for the entire dataset with a Log-Normal CDF fit. 

 

Table 4. Summary of Log-Normal PDF fits to various ship length sets. 

Ship Length 
[m] L<75 75≤L<125 125≤L<175 175≤L<225 225≤L<275 275≤L 100<L<300 

KSH Test Accepted Rejected* Accepted Accepted Accepted Accepted Rejected 

# Samples 101 773 385 284 123 139 1179 

A 0.013448 -- 0.10402 0.11548 −0.21239 −0.090188 -- 

B 1.2167 -- 0.90716 0.90787 0.9845 1.0637 -- 

*Removing the two largest normalized RCS values results in KSH being accepted, with # Samples = 771, 
A = −0.054282, and B = 0.99468. 
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Figure 25. PDF of the normalized RCS for L < 75 m with a Log-Normal PDF fit. 

 

 

Figure 26. PDF of the normalized RCS for 75 m ≤ L < 125 m with a Log-Normal PDF fit. 
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Figure 27. PDF of the normalized RCS for 125 m ≤ L < 175 m with a Log-Normal PDF fit. 

 

 

Figure 28. PDF of the normalized RCS for 175 m ≤ L < 225 m with a Log-Normal PDF fit. 

 

38 DRDC Ottawa TM 2007-052 
 
 
 
 



 
 

 

Figure 29. PDF of the normalized RCS for 225 m ≤ L < 275m with a Log-Normal PDF fit. 

 

 

Figure 30. PDF of the normalized RCS for 275 m ≤ L with a Log-Normal PDF fit. 

 

DRDC Ottawa TM 2007-052 39 
 
 

 
 



 
 

 

Figure 31. PDF of the normalized RCS for 100 m < L < 300 m with a Log-Normal PDF fit. 
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8. Comparison of the 2005 and 2006 Datasets 

The document has focussed on the analysis of 1805 ship signatures in SCNB mode data acquired 
in 2006, as validated with AISLive data.  A similar data set was acquired in 2005, but based upon 
399 ship signatures in Fine mode data.  A key question is whether or not the ship RCS results are 
consistent between the two data sets.  As noted in the previous section, the empirical model fits 
are slightly, but not drastically, different between the two data sets.  If we could combine the two 
data sets, for example, then it would provide a larger validated ship population for subsequent 
statistical analysis.  Differences between the two data sets could be related to the resolution at 
which the data were acquired (nominally 50 m for SCNB mode and 8 m for Fine mode). 

To compare the two data sets we again used the KSH test, but this time to establish whether or 
not the Fine mode RCS data set could have been drawn from the same population as the SCNB 
mode RCS data set.  Table 5 summarizes various tests that were performed to examine the 
behaviour of the test and the comparison of the two RCS populations. 

In Test #1, we tested the first half of the SCNB mode RCS data (sample population X1) against 
the second half of the SCNB data (sample population X2).  Likewise, in Test #2, we tested the 
first half of the Fine mode RCS data (sample population X1) against the second half of the Fine 
data (sample population X2).  In both cases, the KSH is accepted, thus validating the test, 
indicating internal consistency within the two data sets, and establishing how the test can be used 
to show that samples have been drawn from the same population. 

In Test #3, we tested the Fine mode RCS data (sample population X1) against the SCNB RCS 
data (sample population X2).  In this case, the KSH is rejected, indicating that the two data sets 
were not drawn from the same continuous population. 

In Test #4, we tested the Fine mode normalized RCS data (sample population X1) against the 
SCNB mode normalized RCS data (sample population X2).  In this case, the KSH is accepted, 
indicating that the two data sets were drawn from the same continuous population.  The result is 
extremely important since it shows that although the normalizations that were used were different 
in the two cases, the variability of the normalized RCS values was the same.  This is in spite of 
the fact that we were not able to find a simple PDF that described the variability across the full set 
of either normalized SCNB mode or normalized Fine mode data.  Apparently, the difference 
between the Fine mode and SCNB mode data sets rests in the difference between the two 
normalization functions. 

As a final test, and in spite of the result of Test #4, we went ahead and combined the Fine mode 
and SCNB mode data sets.  In Test #5, we tested the Fine mode RCS data normalized by the 
combined fit (sample population X1) against the SCNB mode RCS data normalized by the 
combined fit (sample population X2).  In this case, although the combined fit is quite similar to 
the SCNB fit of equation (5), the KSH is rejected, which affirms that the two RCS populations are 
different.  
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Table 5. KSH test results to determine sample population dependence. 

Test # Input Populations X1 and X2 to kstest2 KSH Test 

1 X1=First half of SCNB mode RCS data (N=903) 

X2=Second half of SCNB mode RCS data (N=902) 

Accepted 

2 X1=First half of Fine mode RCS data (N=200) 

X2=Second half of Fine mode RCS data (N=199) 

Accepted 

3 X1=Fine mode RCS data (N=399) 

X2=SCNB mode RCS data (N=1805) 

Rejected 

4 X1=Fine mode RCS data normalized by equation (7) (N=399) 

X2=SCNB mode RCS data normalized by equation (5) (N=1805) 

Accepted 

5 X1=Fine mode RCS data normalized by combined fit (N=399) Rejected 

X2=SCNB mode RCS data normalized by combined fit (N=1805) 

In Figure 32 and Figure 33 we compare the normalization functions that were estimated for the 
Fine mode, SCNB, and the combined data sets.  In comparison to the Fine mode normalization 
function, the SCNB data are different by from −1 dB for smaller ship lengths to 2 dB for longer 
ship lengths.  Since the variability of the normalized RCS data is the same for the Fine and SCNB 
data sets, we assume that this difference can be ascribed to the resolution of the two beam modes.  
Although this does not appear to be a large difference, it could be indicative of the resolution 
dependence of ship RCS and would warrant further investigation. 
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Figure 32. Three model fits for total RCS versus ship length for Fine, SCNB, and Combined data. 

 

 

Figure 33. Ratio of the model fits to the Fine mode case versus ship length for Fine/Fine, 
SCNB/Fine, and Combined/Fine. 
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9. Conclusions 

In this document, the analysis of ship signatures in RADARSAT-1 SCNB imagery in the context 
of AISLive vessel validation data has been considered.  The following conclusions are offered:  

• CSIAPS should be used to refine the expected pass time if temporal accuracy is critical to 
the planning of validation data acquisition.  CSIAPS provided predicted pass times within a 
few seconds of actual if run roughly one week in advance of the acquisition (and provided 
the orbit data was correctly updated).  On the other hand, SPA provided predicted pass times 
within a few minutes of the actual pass times. 

• 8-bit SCNB products from the CDPF will often saturate the available dynamic range, 
leading to an underestimate of the ship RCS.  We overcame this problem by working from 
floating point products that were generated on a desktop SAR processor.  In general, 
dynamic range saturation is a problem that will limit the quantitative evaluation of ship 
signatures. 

• The AISLive data contains inherent errors relative to an authoritative ship database.  These 
errors might reflect the error rates in AIS data in general.  Ship identification errors were 
relatively rare but do occur.  Ship length, a key parameter for our RCS analysis, was in error 
for nearly 10% of the cases considered.  Errors in dynamic data also occur but are more 
difficult to quantify.  Use of bracketing AISLive snapshot data sets reduced dead-reckoning 
errors that could be associated with single snapshot dead reckoning. 

• Interpolation schemes were developed to provide AIS-predicted positions for ships in the 
SCNB data.  The predicted positions included an azimuthal shift operation to account for the 
Doppler shift associated with moving targets.  For the high density shipping regions 
considered, it was essential to carry out both interpolation and azimuth shifting operations.  
We found that the error between the AIS-predicted position and the ship signature position 
(124 m) was smaller than the average ship length in the overall data set (147 m). 

• This work resulted in a set of 1805 validated SCNB ship signatures.  The ships ranged from 
40 m to 350 m in length. 

• The total RCS of the SCNB ship data was modelled as a simple geometric function of the 
ship length according to equation (5).  The variability about the normalized RCS, a 
consequence of ship type, incidence angle, aspect angle, and sea state, to name a few, could 
not be described by a single PDF, but a Log-Normal distribution does appear to be 
appropriate for certain ship length ranges.  The fitting of the normalized RCS data to more 
complex, multi-parameter PDFs is warranted. 

• The variability of the normalized SCNB ship RCS data considered in this document is the 
same as the variability of the normalized Fine mode ship RCS data that were acquired in 
2005.  However, the two data sets differ by the normalization function which amounts to a 
few dB over the available range of ship lengths.  Presumably this difference can be ascribed 
to the RCS being slightly dependent upon the resolution at which the data were acquired.  
Further investigation of the resolution dependence of the RCS could lead to new and more 
accurate ship RCS models. 
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List of acronyms  

A Gamma or Log-Normal distribution shape parameter 
AIS Automatic Identification System 
APP EarthView Advanced Precision Processor 
ATR Automatic Target Recognition 

B Gamma or Log-Normal distribution scale parameter 
CDF Cumulative Distribution Function 
CDPF Canadian Data Processing Facility 
CoG Course over Ground 
CSIAPS Commercial Satellite Imagery Acquisition Planning System 
DND Department of National Defence 
DR Dead Reckoning 
DRDC Defence R&D Canada 
GPS Global Positioning System 
IMO International Maritime Organisation 
ISR Internet Ships Register 
KSH Kolomogorov-Smirnov Hypothesis 

L Ship Length 
LH Line Heading 
LUT look-up table 
Mean Sample Mean 
MDA MacDonald, Dettwiler and Associates Ltd. 
MMSI Maritime Mobile Service Identity 
OMW Ocean Monitoring Workstation 
PDF Probability Density Function 
R-1 RADARSAT-1 
R&D Research & Development 
RCS Radar Cross Section 
RSI RADARSAT International 
S5 Standard beam mode 5, RADARSAT-1 
S6 Standard beam mode 6, RADARSAT-1 
SAR Synthetic Aperture Radar 
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SCNB ScanSAR Narrow B (W2-S5-S6), RADARSAT-1 
SoG Speed over Ground 
SPA Swath Planning Application 
STD Sample Standard Deviation 
UTC Universal Coordinated Time 
VHF Very High Frequency 
VUSAR An xv-based SAR image analysis software 
W2 Wide beam mode 2, RADARSAT-1 
X1 Sample population #1 
X2 Sample population #2 
 

DRDC Ottawa TM 2007-052 47 
 
 

 
 



 
 

48 DRDC Ottawa TM 2007-052 
 
 
 
 

Distribution list  

Document No.: DRDC Ottawa TM 2007-052 

 

LIST PART 1: Internal Distribution by Centre: 
4 Library DRDC Ottawa 
1 Ryan English 
1 Gary Geling 
1 Chuck Livingstone 
1 Jeff Secker 
1 Paris Vachon 
1 John Wolfe 
      

10 TOTAL LIST PART 1 
  

LIST PART 2: External Distribution by DRDKIM  
1 CISTI 
1 DRDKIM 
3 Library and Archives Canada 
1 LCol Jeff Howes, DPDOIS, Polar Epsilon 
1 LCdr Robert Quinn, DJCP 
1 LCdr Andy Samoluk, DJCP 
1 Jake Tunaley, DPDOIS, Polar Epsilon 
1 Caroline Wilcox, DSTC4ISR 
      

10 TOTAL LIST PART 2  
  

20 TOTAL COPIES REQUIRED 

 



 
 

 
 

 

DOCUMENT CONTROL DATA 
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified) 

 

 1. ORIGINATOR (The name and address of the organization preparing the document. 
Organizations for whom the document was prepared, e.g. Centre sponsoring a  
contractor's report, or tasking agency, are entered in section 8.) 
 
Defence R&D Canada - Ottawa 
3701 Carling Avenue 
Ottawa, Ontario K1A 0Z4 

 2. SECURITY CLASSIFICATION  
 (Overall security classification of the document 

including special warning terms if applicable.) 
 
UNCLASSIFIED 

 
 
 
 
 
 
 

 3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C, R or U)  
in parentheses after the title.) 
 
Ship Signatures in RADARSAT-1 ScanSAR Narrow B Imagery: Analysis with AISLive Data  

 
 
 
 
 

 4. AUTHORS (last name, followed by initials – ranks, titles, etc. not to be used) 
 
Vachon, P.W., English, R.A., Wolfe, J. 

 
 
 
 

 5. DATE OF PUBLICATION  
(Month and year of publication of document.) 
 
 
March 2007 
 

 6a. NO. OF PAGES  
(Total containing information, 
including Annexes, Appendices, 
etc.) 

64 

 6b. NO. OF REFS  
(Total cited in document.) 
 
 
13  

 
 
 
 

 

 7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report, 
e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.) 
 
Technical Memorandum 
 

 
 

 
 

 8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.) 
 
Polar Epsilon SLA 
 

 
 
 
 

 
 9a. PROJECT OR GRANT NO. (If appropriate, the applicable research 

and development project or grant number under which the document was 
written. Please specify whether project or grant.) 
 
15ec06-01, 15ec23 

 9b. CONTRACT NO. (If appropriate, the applicable number under which 
the document was written.) 
 
 
 

 
 
 
 
 

 
 10a. ORIGINATOR'S DOCUMENT NUMBER (The official document 

number by which the document is identified by the originating activity. 
This number must be unique to this document.) 
 
DRDC Ottawa TM 2007-052 
 

 10b.  OTHER DOCUMENT NO(s). (Any other numbers which may be 
assigned this document either by the originator or by the sponsor.) 
 
 
  

 

 
 
 
 

 

 11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.) 
 

( X ) Unlimited distribution 
(   ) Defence departments and defence contractors; further distribution only as approved 
(   ) Defence departments and Canadian defence contractors; further distribution only as approved 
(   ) Government departments and agencies; further distribution only as approved 
(   ) Defence departments; further distribution only as approved 
(   ) Other (please specify):   

 
 
 
 
 
 
 
 
 

 
12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the 

Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement audience  
may be selected.)) 
 

    

 
 
 

 



 
 

 
  
 

 
 

 

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable  
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification  
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include  
here abstracts in both official languages unless the text is bilingual.)  
 

RADARSAT-1 ScanSAR Narrow B (SCNB) mode imagery at 50 m (nominal) spatial 
resolution of high density shipping regions were acquired along with contemporaneous 
Automatic Identification System (AIS) data via an AISLive snapshot service.  Within the 
images are 1805 signatures of isolated ships ranging from 40 m to 350 m in length, for which 
AIS data, including ship identification, size, and velocity, are available. 

The AIS data were verified through an authoritative ship database, which identified errors in the
static AIS data.  Dynamic errors were also characterized since pairs of location observations
were available.  The mean error between the AIS-predicted ship position and the ship signature
position (124 m) is smaller than the average ship length in the overall data set (147 m). 

The data were used to model the radar cross section (RCS) of ships in SCNB data as a simple
geometric function of the ship length.  The variability about the normalized RCS, a consequence
of ship type, local incidence angle, ship aspect angle, and sea state, could not be described by a
single probability density function, but a Log-Normal distribution was appropriate for certain
ship length ranges.  Ship RCS variability observed in the SCNB data is consistent with that
observed previously in Fine mode data, but there is an overall scaling differing between the
SCNB and Fine mode data sets. 

This work demonstrates that the fusion of RADARSAT image signatures of ships with AIS data
is straightforward and provides unprecedented insight to observed ship signatures.  However,
the AIS data, at least the static fields, should be routinely verified prior to fusion with other
sources of ship information. 

 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be  
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model 
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a  
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select indexing  
terms which are Unclassified, the classification of each should be indicated as with the title.) 
 
RADARSAT-1, SAR, synthetic aperture radar, ScanSAR, Automatic Identification System, AIS, 
AISLive   

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 






